13,357 research outputs found

    A unification of RDE model and XCDM model

    Get PDF
    In this Letter, we propose a new generalized Ricci dark energy (NGR) model to unify Ricci dark energy (RDE) and XCDM. Our model can distinguish between RDE and XCDM by introducing a parameter β\beta called weight factor. When β=1\beta=1, NGR model becomes the usual RDE model. The XCDM model is corresponding to β=0\beta=0. Moreover, NGR model permits the situation where neither β=1\beta=1 nor β=0\beta=0. We then perform a statefinder analysis on NGR model to see how β\beta effects the trajectory on the r−sr-s plane. In order to know the value of β\beta, we constrain NGR model with latest observations including type Ia supernovae (SNe Ia) from Union2 set (557 data), baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey (SDSS) data release 7 (DR7) galaxy sample and cosmic microwave background (CMB) observation from the 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) results. With Markov Chain Monte Carlo (MCMC) method, the constraint result is β\beta=0.08−0.21+0.30(1σ)−0.28+0.43(2σ)0.08_{-0.21}^{+0.30}(1\sigma)_{-0.28}^{+0.43}(2\sigma), which manifests the observations prefer a XCDM universe rather than RDE model. It seems RDE model is ruled out in NGR scenario within 2σ2\sigma regions. Furthermore, we compare it with some of successful cosmological models using AIC information criterion. NGR model seems to be a good choice for describing the universe.Comment: 12 pages, 7 figures, 2 tables. Accepted for publication in PL

    Constraints on f(R) cosmologies from strong gravitational lensing systems

    Get PDF
    f(R) gravity is thought to be an alternative to dark energy which can explain the acceleration of the universe. It has been tested by different observations including type Ia supernovae (SNIa), the cosmic microwave background (CMB), the baryon acoustic oscillations (BAO) and so on. In this Letter, we use the Hubble constant independent ratio between two angular diameter distances D=Dls/DsD=D_{ls}/D_s to constrain f(R) model in Palatini approach f(R)=R−αH02(−RH02)βf(R)=R-\alpha H^2_0(-\frac{R}{H^2_0})^\beta. These data are from various large systematic lensing surveys and lensing by galaxy clusters combined with X-ray observations. We also combine the lensing data with CMB and BAO, which gives a stringent constraint. The best-fit results are (α,β)=(−1.50,0.696)(\alpha,\beta)=(-1.50,0.696) or (Ωm,β)=(0.0734,0.696)(\Omega_m,\beta)=(0.0734,0.696) using lensing data only. When combined with CMB and BAO, the best-fit results are (α,β)=(−3.75,0.0651)(\alpha,\beta)=(-3.75,0.0651) or (Ωm,β)=(0.286,0.0651)(\Omega_m,\beta)=(0.286,0.0651). If we further fix β=0\beta=0 (corresponding to Λ\LambdaCDM), the best-fit value for α\alpha is α\alpha=−4.84−0.68+0.91(1σ)−0.98+1.63(2σ)-4.84_{-0.68}^{+0.91}(1\sigma)_{-0.98}^{+1.63}(2\sigma) for the lensing analysis and α\alpha=−4.35−0.16+0.18(1σ)−0.25+0.3(2σ)-4.35_{-0.16}^{+0.18}(1\sigma)_{-0.25}^{+0.3}(2\sigma) for the combined data, respectively. Our results show that Λ\LambdaCDM model is within 1σ\sigma range.Comment: 9 pages, 2 figures, 2 table

    On the valence bond solid in the presence of Dzyaloshinskii-Moriya interaction

    Full text link
    We examine the stability of the valence bond solid (VBS) phase against the Dzyaloshinskii-Moriya (DM) interaction in the bipartite lattice. Despite the VBS is vulnerable against the antiferromagnetic interaction, for example in the Q-J model proposed by Sandvik, where the quantum phase transition occurs at J∗/Q=0.04J^*/Q = 0.04, we found that on the contrary the VBS is very stable against the DM interaction. The quantum phase transition does not occur until D/Q goes to infinity, where D is the strength of the DM interaction. The VBS in the ALKT model and the Haldane gap system also exhibit the same property.Comment: 5 pages and 5 figure

    Effect of interaction with neutrons in matter on flavor conversion of super-light sterile neutrino with active neutrino

    Full text link
    A super-light sterile neutrino was proposed to explain the absence of the expected upturn of the survival probability of low energy solar boron neutrinos. This is because this super-light sterile neutrino can oscillate efficiently with electron neutrino through a MSW resonance happened in Sun. One may naturally expect that a similar resonance should happen for neutrinos propagating in Earth matter. We study the flavor conversion of this super-light sterile neutrino with active neutrinos in Earth matter. We find that the scenario of the super-light sterile neutrino can easily pass through possible constraints from experiments which can test the Earth matter effect in oscillation of neutrinos. Interestinlgy, we find that this is because the naively expected resonant conversion disappears or is significantly suppressed due to the presence of a potential VnV_n which arises from neutral current interaction of neutrino with neutrons in matter. In contrast, the neutron number density in the Sun is negligible and the effect of VnV_n is effectively switched off. This enables the MSW resonance in Sun needed in oscillation of the super-light sterile neutrino with solar electron neutrinos. It's interesting to note that it is the different situation in the Sun and in the Earth that makes VnV_n effectively turned off and turned on respectively. This observation makes the scenario of the super-light sterile neutrino quite interesting.Comment: 22 pages, 10 figure
    • …
    corecore